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River meandering dynamics
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The Ikeda, Parker, and Sawai river meandering model is reexamined using a physical approach employing
an explicit equation of motion. For periodic river shapes as seen from above, a cross-stream surface elevation
gradient creates a velocity shear that is responsible for the decay of small-wavelength meander bends, whereas
secondary currents in the plane perpendicular to the downstream direction are responsible for the growth of
large-wavelength bends. A decay lengthD5H/2Cf involving the river depthH and the friction coefficientCf

sets the scale for meandering, giving the downstream distance required for the fluid velocity profile to recover
from changes in the channel curvature. Using this length scale and a time scaleT, we explicitly trace the
observed length scale invariance to the equations of motion, and predict similar time and velocity scale
invariances. A general time-dependent nonlinear modal analysis for periodic rivers reveals that modes higher
than the third mode are needed to describe upstream migration of bend apexes just before oxbow cutoff, and
are important to accurate calculations of the time and sinuosity at cutoff.
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I. INTRODUCTION

Rivers and streams are among the most beautiful, im
tant, and dangerous objects in nature, supplying water,
droelectric power, transportation, and recreation, and ins
ing some of the world’s most beautiful poetry. They a
crucial to terrestrial geomorphology, excavating huge can
networks and forming new lands by sediment depositi
Almost a billion tons of sediment are carried annually by t
Mississippi river to the Gulf of Mexico@1#, where sediment
deposition over the last 6000 years has increased the ar
Louisiana by about 35%. To preserve the navigability of T
ledo Harbor, where the Maumee river empties into La
Erie, almost a million cubic meters of sediment are dredg
annually @2#. Many sandstone reservoirs of natural g
which are responsible for 23% of the world energy consum
tion ~second only to oil!, were formed from the sedimen
deposits of primeval rivers. Tremendous ongoing efforts
control rivers and to maintain their navigability are par
motivated by disasters such as the 1931 flood of Chin
Yellow River, which killed almost four million people, an
the 1993 upper-Mississippi flood, which caused $15 billi
in property damages@1#.

One of the most fascinating behaviors of rivers is th
tendency to meander and rework their floodplains. Some
ander bends of the lower Mississippi move 20 m laterally
year @1#, though lateral migration rates for typical active
meandering rivers are of order 1 m per year or less. Even o
a planar floodplain, large-wavelength departures from ri
linearity grow in amplitude and accordingly increase t
river sinuosityS5L/L0, defined as the ratio of the total rive
lengthL to the linear distanceL0 between its endpoints. A
its sinuosity increases, a river occasionally meets itself
abandons an oxbow~dark, stagnant loop in Fig. 1!, thereby
shortening the river and reducing its sinuosity. Mean
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bends also migrate downstream, leading to bend distort
~Fig. 1!.

The purpose of this paper is to study the mechanisms
consequences of the meandering instability. To do so, we
a meandering model derived by Ikeda, Parker, and Sawai@3#,
and extended by Johannesson and Parker@4#, to find the
migration rate at all points along a river. This model, deriv
from the Reynolds equations for quasisteady turbulent fl
in a shallow sinuous channel, relates the migration rate to
channel centerline curvature through a linear differen
equation valid to first order in the curvature, and is approp
ate when the river width is small compared with bend rad

i-

FIG. 1. Annotated aerial photograph of a reach of the Beat
River ~BC7182-057, Courtesy Province of British Columbi
Canada!, showing the lateral and downvalley migration of meand
bends. The river flows from the left to the right sides of the pho
graph. The dark loop is an oxbow lake, a former river bend wh
was abandoned when adjacent bends in the meandering river
each other. Vegetation patterns reveal former positions of the r
during the last 300 years; white arrows indicate the directions
channel shift. Meander nodes~white dots!, where the channel shif
is zero, are always downstream of inflection points~black dots!,
where the channel curvature changes sign. The distance betwe
inflection point and its downstream meander node is governed
the decay lengthD @Eq. ~1!#, the distance required for the cros
stream shear in the downstream velocity to recover from change
the channel curvature. The separation between inflection points
meander nodes is responsible for the downstream migration of
ander bends.
©2002 The American Physical Society03-1
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Although Seminara and coworkers@5# have identified some
consequences of weakly nonlinear corrections to the Ike
Parker, and Sawai model, this model has enjoyed a rich
lowing @6–10# because of its ability to account quantitative
for the principal features of meandering rivers, which are
growth and downvalley migration of long-wavelength ben
To relate the migration rate to the resulting evolution of t
shape of the river centerline, we employ an exact nonlin
integro-differential equation introduced by Seminara and
workers @11,12#, which correctly accounts for the essent
stretching and shrinking of the evolving river. We also intr
duce and derive an explicit nonlinear dynamical equat
@Eq. ~14!# for the time-dependent river length. This equati
allows the sinuosity of the river to be calculated explicit
and serves as the key to our analytical estimates of the c
cal wavelength for nonlinear river meandering@13#. This
wavelength separates short-wavelength bends, which de
from long-wavelength bends, which grow.

Our physical approach yields improved understanding
the basic mechanisms of meandering. We attribute the de
of small-wavelength meander bends to the Bernoulli sh
caused by the cross-stream surface elevation gradient,
trace the origin of neutral meandering stability to the co
petition between Bernoulli shear and the secondary flow
the plane perpendicular to the downstream direction. Crit
to this competition is the decay length

D5
H

2Cf
, ~1!

which involves the river depthH and the friction coefficient
Cf . This decay length gives the downstream distance
quired for cross-stream shear in the downstream velocit
recover from changes in the channel curvature. Berno
shear dominates for wavelengths that are small comp
with D, and secondary flow dominates otherwise. In study
any particular river, important insights may be gained by j
knowing D, which sets the basic scale for the meander
wavelength as well as the distance between channel in
tion points and meander nodes, where the migration rate
ishes.

We also identify the basic time scaleT ~Sec. IV! for me-
andering rivers, and show that the equations of motion
quire only a single dimensionless parameter when scale
D andT. This scale invariance is responsible for the rema
able observed proportionality between meander wavelen
and river width, valid over an enormous range of riv
widths, from 10-cm-wide laboratory flumes to the 1-km
wide Mississippi, and over remarkably different conditio
including alluvial rivers, incised rivers, the gulf stream, a
glacier meltwater@14#. We suggest that a similar proportion
ality exists between the meander period andT, although this
proportionality is less readily observable over human li
times because meander periods for natural rivers are t
cally of the order of hundreds or thousands of years. Ide
fication of the appropriate scales should prove useful to
eventual goal of studying the oxbow size distribution crea
by a meandering river@10#.
04630
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We present a general time-dependent nonlinear mo
analysis that includes all Fourier modes describing perio
river centerlines, in contrast with previous treatments t
include only a few low-lying modes@11,12#. We show that
higher modes implyupstreammigration of bend apexes in
the latter stages of development of periodic rivers approa
ing the time of oxbow cutoff. We also calculate the prec
sinuosity at cutoff. In a separate paper@15#, we use level-set
numerical methods to study the predictions of the Ike
Parker, and Sawai model for nonperiodic rivers.

Ignored herein are the effects of confining valley wa
and nonuniformity in the alluvium erodibilities@9#. Many
rivers such as the Beatton flow in flat flood plains, with qu
uniform alluvium erodibility @16#. The ‘‘quasisteady’’ fluid
flow through the channel is assumed to adjust quickly to
slow changes in the river shape caused by meandering
cluded herein are the dependences on sinuosity of the a
age downstream velocity and fluid depth, which are igno
in some recent studies@9,10,17#. Other statistical models
@18# ignore downstream migration, an essential feature
real rivers.

Section II invokes fundamental fluid physics to discu
the mechanisms of meandering. In Sec. III, we presen
derivation of Seminara’s evolution equation@11,12#, intro-
duce our equation for the evolution of the river length, a
review the Ikeda, Parker, and Sawai model@3#. In Sec. IV,
these equations are written in dimensionless variables
demonstrate their scale invariance, and a series solution
the sinuosity of a sine-generated curve@19# is presented. In
Sec. V, the linear stability analysis@3# of small-amplitude
periodic departures from straight rivers is reexamined to f
ther elucidate the fundamental mechanisms of meander
In Sec. VI, we present a compact derivation of the ‘‘K
noshita curve’’ describing steady finite-amplitude rivers th
propagate downstream without change of form, which w
first derived by Parker and Andrews@7# without the benefit
of the Seminara equation. In Sec. VII, we present our gen
time-dependent modal analysis, and observe that this an
sis precludes even-numbered modes. We also show tha
explicit equation for the time-dependent river length predi
a sinuosity that agrees with numerical integration. In S
VIII, we study the sinuosity and bend migration near oxbo
cutoff, and address the question of why our approxim
nonlinear stability condition for periodic rivers should be
simple extension of the linear stability condition.

II. FUNDAMENTAL CONSIDERATIONS

Natural alluvial rivers continually rework their flood
plains, and either degrade or aggrade these plains depen
on the balance between erosion and deposition of sedim
Meandering tends to decrease the local downstream
slope, and oxbow cutoff increases it. Local humps in
riverbed degrade faster than average because their la
fluid velocities, which are demanded by the smaller stre
cross section, erode bed material more aggressively. S
larly, valleys in the riverbed aggrade faster than average
cause the associated smaller fluid velocities allow increa
rates of deposition. These processes tend to quickly sm
3-2
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RIVER MEANDERING DYNAMICS PHYSICAL REVIEW E65 046303
out such humps and valleys, yielding a uniform downstre
bed slope, apart from small-scale dunes and ripples@20#.

The elevation of the riverbed centerline a distances mea-
sured downstream along the centerline may be written
cordingly as

z~s!5z02Is, ~2!

wherez05z(0) andzL5z(L) are the respective centerlin
elevations at the upstream and downstream ends of the re
and whereI'1024–1023 is the downstream centerline be
slope, assumed to be independent ofs. Since all points along
a reach may meander laterally with time, including the u
stream and downstream ends, it is convenient todefine a
river reach by the elevationsz0 and zL ; the upstream and
downstream ends of the reach are defined as those loca
on the river with respective specified elevationsz0 and zL .
Correspondingly, the bed slopeI, though spatially uniform,
and the lengthL of the reach measured along the river ce
terline must vary with time as the river meanders latera
while the elevation dropz02zL5IL 5I 0L0 remains constan
with time, whereI 0 and L0 are the valley slope and valle
length measured along a straight line between the endpo
Accordingly, we can write a sinuosity-dependent bed slo
as @3#

I ~S!5
I 0

S
, ~3!

whereS5L/L0'226 is the time-dependent river sinuosit
Natural rivers are fully developed turbulent boundary la

ers, with large typical Reynolds numbers Re5UH/n'106

involving typical average downstream velocitiesU'1 m/s
and depthsH'1 m, and involving the kinematic viscosit
n'1026 m2/s of water. Consequently, momentum transp
is dominated by diffusion, mixing, and stretching of turb
lent eddies, rather than by viscous diffusion. To effectiv
dissipate gravitational potential energy, aspect ratios

G5
2b

H
~4!

of river width 2b to depthH are typically of orderG'10
220. To close the system of equations, the turbulent do
stream bed stressts5rCfU

2 is often evaluated using a con
stant dimensionless friction coefficient@8# Cf'1023–1022

and constant mass densityr. In ‘‘quasisteady’’ mechanica
equilibrium, the upstream bed force per unit areats on the
overlying fluid volume must balance the downstream co
ponent of gravitational force per unit area on the volum
rHgI, whence

U5S gHI

Cf
D 1/2

. ~5!

The I 1/2 dependence of this result is a central feature of pr
tical hydraulic equations for open channel flow@21#.

Because the downstream bed slopeI depends on sinuosity
S according to Eq.~3!, U and H must also depend onS
through Eq.~5!. The upstream precipitation and melting co
04630
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ditions determine the river dischargeQ52bHU, which is
determined by the rainfall conditions and is, therefore, in
pendent of S. The depth H0 and velocity U0
5(gH0I 0 /Cf)

1/2 of a straightened river of the same wid
~running in a straight line between the endpoints! must,
therefore, obeyHU5H0U0, whence

U5U0S21/3 ~6!

and

H5H0S1/3 ~7!

for a sinuous river@3#. Increasing the sinuosity of a river
therefore, lowers its flow speed and increases its depth,
accordingly, increases the likelihood of flooding.

The phenomenology of meandering by slow lateral mig
tion depends crucially on cross-stream gradients of
downstream velocity. Large near-bank fluid velocities
crease the local shear stress, resulting in increased bank
sion, while small near-bank velocities result in increas
deposition. Rivers tend to maintain uniform widths by ba
ancing erosion at one bank with deposition at the other. Ty
cally, the outside ‘‘cut’’ bank of a meander bend erodes a
the inside bank, called the ‘‘point bar,’’ aggrades, leading
slow lateral and downstream migration of the bend. Ho
ever, the roles reverse for small-radius bends resulting fr
oxbow cutoff. These small-radius bends are quickly straig
ened by high velocity and erosion near theinsidebank. Thus
the meandering problem reduces to finding the cross-str
velocity profiles.

Elementary fluid physics illuminates fundamental mech
nisms governing these cross-stream profiles. At river ben
the water surface elevation gradient creates an outw
directed component“P of the hydrostatic pressure gradien
which supplies the centripetal body forcef52“P/r neces-
sary to accelerate fluid elements around the bend. Co
quently, the downstream velocities of fluid elements enter
the low-pressure region near the inside bank must incre
by Bernoulli’s law, whereas the downstream velocities
elements entering the high-pressure region near the ou
bank must decrease@Fig. 2~a!#. This ‘‘Bernoulli shear’’@22#
tends to move the locus of maximum velocity toward t
inside bank, and thereby straightens small-radius bends
erosion of the inside bank. Bernoulli shear also erodes
inside bank at the upstream ends of large-radius bends.

A secondary flow@22# in the plane perpendicular to th
downstream direction convectively transports downstre
momentum toward the outside bank and deepens the
there. These two effects drive the locus of high velocity
ward the outside bank, in direct competition with Bernou
shear, and account for the lateral and downstream migra
of large-radius meander bends. Whereas fluid elements a
depths experience the same centripetal accelerationa5f
52“P/r, downstream fluid velocities increase with in
creasing height above the bed, because of the vertical s
produced by the bed stress. Accordingly, low-velocity flu
elements near the bed ‘‘fall’’ toward the inside bank, that
they follow circular paths whose radiir 5v2/a are smaller
than the meander bend radius, whereas high-velocity
3-3
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FIG. 2. Schematic velocity profiles illustrating the physical ba
of meandering.~a! Three-dimensional view of a river bend to th
right, showing the outward hydrostatic pressure gradient“P cre-
ated by the surface elevation gradient, and showing the resu
Bernoulli shear in the downstream velocity~arrows!. As fluid ele-
ments near the inside bank enter the low-pressure region at the
apex, their velocities increase by Bernoulli’s law. Similarly, t
downstream velocities of fluid elements near the outside of the b
decrease as they approach the high-pressure region at the
apex. This Bernoulli shear straightens small-radius bends by e
ing the inside bank.~b! Vertical cross section through a river ben
to the right, as seen by a river-bound observer facing downstre
showing counterclockwise secondary flow and the resulting de
ening near the outside ‘‘cut’’ bank. This secondary flow conve
tively transports downstream momentum toward the outside b
and dominates over Bernoulli shear for large-radius bends, lea
to lateral and downstream migration of meander bends.~c! Sche-
matic downstream velocities~solid arrows! for one cycle of a large-
wavelength sinusoidal river. Solid traces represent the river ba
whereas the dashed trace represents the locus of maximum vel
called the thalweg, which lags behind the channel curvature by
decay lengthD @Eq. ~1!#. Large downstream velocities near a ba
increase the local shear and the local bank erosion rates, leadi
lateral and downstream migration of the meander pattern~dashed
arrows!. For typical large-radius bends such as those shown,
secondary flow overwhelms Bernoulli shear, leading to high velo
ties near the outsides of bends, with the largest velocities and
gration rates downstream of the bend apex. For the first~right!
bend, pointsA, A8, andA9 respectively represent the bend apex, t
location of strongest secondary flow, and the location of maxim
cross-stream shear in the downstream velocity. Also atA9, the thal-
weg makes its closest approach to the left bank. PointsB, B8, and
B9 respectively designate an inflection point in the channel cur
ture, a location of vanishing secondary flow, and a location of v
ishing cross-stream shear in the downstream velocity~a meander
‘‘node’’ !. TheA–A8 andB–B8 distances, neglected herein, are co
siderably smaller thanD, which scales theA–A9 and B–B9 dis-
tances.
04630
ments near the surface careen toward the outside bank,
ing radii larger than the meander bend radius. The resul
inward secondary flow near the bed scours sediment tow
the inside bank, thereby deepening the river near the out
bank @Fig. 2~b!#. To avoid excessive shoaling of the flo
near the inside bank, the channel then responds by shif
the bulk of the downstream flow toward the outside ba
Furthermore, the outward secondary flow near the surf
convectively transports downstream momentum, which is
ready greatest near the surface, toward the outside bank
seen by a river-bound observer facing downstream, bend
the right produce counterclockwise secondary flow@Fig.
2~b!# and bends to the left produce clockwise secondary fl
Because of scour, water near the outside of a bend ca
much less sediment than water near the inside. Anc
Mediterranean civilizations may have recognized this fa
branch channels in their irrigation systems consistently c
nect to the outsides rather than the insides of bends@22#.

As will be shown in Sec. III, the decay lengthD is the
downstream distance required for the cross-stream she
the downstream velocity to recover from changes in
channel curvature. This shear decays exponentially with
creasing distance along straight sections downstream
bends due to turbulent dissipation, and increases with
creasing downstream distance upon entering a bend du
the secondary flow, exponentially approaching its curvatu
dependent asymptotic value. These effects combine to
duce a phase lagd between the channel curvature and t
fluid velocity shear profile, leading to downstream migrati
of meander patterns. Thus,D'100–1000 m governs the up
stream distance over which the shape of the river contribu
significantly to the local velocity profile, and supplies th
basic length scale for meandering.

The secondary flow responds more quickly to change
the channel curvature than the cross-stream shear in
downstream velocity. Decay of the secondary flow occ
over the considerably shorter length scaleD/G because the
associated vertical shear in the cross-stream velocity is c
fined to the bed heightH, whereas the cross-stream shear
the downstream velocity stretches over the entire widthb
of the channel. Accordingly, the small phase lag@8,23,24#
between the secondary flow and the channel curvature is
glected below. The phase lag between channel curvature
secondary flow is negligible because natural river depths
an order of magnitude smaller than their widths. Figure 2~c!
schematically illustrates the phase lag between the cha
curvature and the cross-stream shear in the downstream
locity.

Most meandering occurs during spring and summer flo
ing, when river discharges, sediment loads, and bed scou
much larger than usual. In the model, however, the discha
is assumed to be constant throughout the year, and mea
ing is considered to occur continuously. This assumption
justified as long as the yearly migration~of order 0.5 m! is
small compared with the meander wavelength~of order 300
m!, and as long as the erodibility is adjusted accordingly

III. GOVERNING EQUATIONS

The horizontal coordinates of the riverbed centerline m
be parametrized by the distances according to r (s,t)
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RIVER MEANDERING DYNAMICS PHYSICAL REVIEW E65 046303
5@x(s,t),y(s,t)#, which gives the position of the centerlin
at a distances downstream, at timet. Accordingly, the unit
vector

ŝ[
]r

]s
5 ŝ~s,t ! ~8!

gives the horizontal projection of the downstream directi
SinceI is small for natural meandering rivers, the differen
between sˆ and the actual downstream direction can often
neglected. A cross-stream horizontal unit vector nˆ5n̂(s,t)
5 ẑ3 ŝ points to the left for a riverbound observer facin
downstream, where zˆ is the unit vector pointing vertically
upward. The downstream derivative

] ŝ

]s
52kn̂ ~9!

defines the centerline curvaturek5k(s,t), measured as
positive for turns to the right as seen by a riverbound
server facing downstream, and as negative for turns to
left. Also needed is the downstream derivative of the cro
stream unit vector,

]n̂

]s
5k ŝ, ~10!

which follows from the derivative of nˆ5 ẑ3 ŝ. A normal ve-
locity v(s,t) measures the slow lateral migration rate of t
river in the n̂direction, being positive for migration to th
left and negative for migration to the right.

Given v(s,t) andk(s,t), the general equation of motio
@18#

]r

]t
5vn̂1Fu02E

0

s

k~s8,t !v~s8,t !ds8G ŝ ~11!

governs the time evolution of the riverr (s,t). A simple geo-
metrical derivation of this equation helps to illuminate
content: Figure 3 shows a river arc of lengths at time t, and
shows the same river at timet85t1dt, after ‘‘stretching’’ to
a new lengths8. Significantly, the normal displacement ve
tor vdtn̂ joins points on the rivernot generally sharing the
same value ofs. The geometric relationsds/R5ds8/R8,
R85R1vdt, andR51/k involving the local radii of curva-
ture allow us to relate the elemental arc lengths accordin
ds85(11kvdt)ds, whence integration yields the new rive
lengths8;

s85s1dtE
0

s

k~s9,t !v~s9,t !ds92u0~ t !dt. ~12!

Here, the integration constantu0(t) is the downstream com
ponent of the migration ratedr (0,t)/dt5]r (0,t)/]t

5v(0,t)n̂1u0(t)ŝ of the upstream end (s50) of the river.
04630
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Equation~11! then follows simply by combining the vecto
relation r (s8,t8)5r (s,t)1vdtn̂ with the first-order Taylor
expansion,

r ~s8,t8!5r ~s,t !1~s82s!
]r

]s
~s,t !1~ t82t !

]r

]t
~s,t !.

~13!

Equation~11! gives the velocity]r /]t of a point of constant
s on the river, including both normal and downstream velo
ity components, the latter being required by river stretch
and shrinking. By settings5L(t) and s85L(t1dt)
2uL(t)dt in Eq. ~12!, we obtain a simple equation govern
ing the time evolution of the total river lengthL;

dL

dt
5E

0

L

k v ds2u01uL , ~14!

whereuL is the downstream component of the migration ra
dr (L,t)/dt5v(L,t)n̂1uL(t)ŝ of the downstream end of th
river. The downstream migration ratesu0 anduL , which are
omitted in Ref.@18#, provide maximum flexibility in defining
the river, and prove to be very useful below.

The downstream derivative of Eq.~11! gives a useful
equation of motion governing the river angleu(s,t), the
angle between sˆ(s,t) and the fixed horizontal cartesian dire
tion x̂, satisfying sˆ5 x̂ cosu1ŷ sinu and n̂5 ẑ3 ŝ52 x̂ sinu

1ŷ cosu. Accordingly, ] ŝ/]t5n̂]u/]t and k52n̂•] ŝ/]s

FIG. 3. River centerline arc of lengths at time t, and the same
arc at a later timet85t1dt, of stretched lengths8.s, used in the
derivation of Eq.~11!. A position vectorr (s,t) locates the down-

stream end of the arc at timet. The vectorvdtn̂ gives the displace-
ment of this end normal to the river, wherev5v(s,t) is the normal
velocity. Accordingly,r (s8,t8) gives the resulting position vector o

the downstream end at timet8. A vector ṙ (s,t)dt5@]r (s,t)/]t#dt
gives the displacement of the point on the river at a constant do

stream distances, whereasṙ (0,t)dt gives the displacement of th

s50 point at the upstream end, withṙ (0,t)5v(0,t)n̂1u0ŝ. A
wedge subtends infinitesimal arc lengthsds andds8 on the old and
new positions of the river, with respective local radii of curvatureR
andR8.
3-5
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52]u/]s, and the downstream derivative of Eq.~11! re-
duces to a scalar equation of motion foru(s,t);

]u

]t
5

]v
]s

1kE
0

s

k~s8,t !v~s8,t !ds82ku0 . ~15!

Seminara and co-workers previously derived this equa
using a different approach@11,12#. Given a solutionu(s,t) of
this equation, the cartesian components ofr (s,t) may be
recovered simply by integrating Eq.~8!, yielding

x~s,t !5x0~ t !1E
0

s

cos@u~s8,t !#ds8, ~16!

y~s,t !5y0~ t !1E
0

s

sin@u~s8,t !#ds8. ~17!

The case of a long river of uniform curvaturek51/R(t)
serves to check the nonlinear formalism and to illustr
stretching. Such a river is a vertical right-handed helix
time-dependent radiusR(t) @see Eq.~2!#, whose flood plain
is shaped like a spiral staircase. Setting]k/]s5]v/]s50 in
the downstream derivative of Eq.~15! leavesdk/dt1k2v
50, which is satisfied immediately by the expected norm
velocity v(t)5dR/dt. Furthermore, integrating Eq.~14! for
a river of initial lengthL(0)5R(0)f and for u050 yields
the expected time-dependent lengthL(t)5R(t)f, where
f/2p is the fixed number of helix cycles. Thus, Eqs.~14!
and~15! capture the correct nonlinear dynamics of stretch
for spatially uniform, time-dependent curvature.

To determinev(s,t), we appeal to the celebrated mod
pioneered by Ikeda, Parker, and Sawai@3#. This model,
which has been subsequently discussed and extended b
merous authors@4,6–10#, employs the Saint Venant equa
tions of shallow steady incompressible turbulent flow in
sinuous channel of uniform half-widthb to obtain a depth-
averaged downstream fluid velocity of the formu(s,n)5U
1u8(s,n), whereU is the reach-averaged velocity,u8 is a
first-order correction due to stream curvature, andn is the
cross-stream coordinate measured as positive toward the
bank. To account for cross-stream shear in the downstr
velocity, the normal migration ratev(s,t) is taken to be pro-
portional to the left-bank excess velocityu8(s,b) according
to

v~s,t !5Eu8~s,b!, ~18!

with a small positive dimensionless erodibility typically o
orderE'231028 @7#. Accordingly, the river migrates to th
left (v.0) when the left-bank velocity is higher than ave
age, reflecting higher erosion rates, and the river migrate
the right (v,0) when the left-bank velocity is lower tha
average, reflecting increased stagnation and sediment d
sition. Since the right-bank excess velocity satisfiesu8(s,
2b)52u8(s,b), erosion at one bank always balances de
sition at the other, thereby, allowing the river to mainta
constant width. Points along the river centerline with vani
ing cross-stream shearu8(s,b)50 and vanishing migration
ratev(s,t)50 are called meander nodes.
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Including subsequent corrections@4#, the Ikeda, Parker,
and Sawai model@3# relatesu8(s,b) andk(s,t) to first order
according to

]u8~s,b!

]s
1

u8~s,b!

D
5bUS 2

]k

]s
1

Pk

D D , ~19!

where

P5
F21A1As21

2
, ~20!

measures the strength of secondary flow relative to Berno
shear, and involves the Froude numberF5U/(gH)1/2, the
ratio of the flow velocity to the wave velocity, and othe
constants to be explained shortly. The first term on the
side of Eq.~19! gives the rate of change inu8(s,b) with
downstream distance. ForD5H/2Cf→`, Eq. ~19! easily
yields a left-bank excess velocityu8(s,b)52bUk that is
180° out of phase with the centerline curvature, thereby, g
ing increased downstream velocities near theinsidebank for
both left and right turns in the river@Fig. 2~a!#. The first term
on the right side of Eq.~19! accordingly represents Bernoul
shear. The second term on the left side governs the turbu
decay of cross-stream shear. The second term on the
side ignores the phase lag between the curvature andu8(s,b)
@4#, but includes, throughAs , the convective transport o
downstream momentum~toward the outside bank! by the
secondary flow. The cross-stream bed slopeA appearing in
the bed-elevation equationz(s,n)5z02Is2Ak(s)n @see
Eq. ~2!# accounts for the shift of downstream momentu
toward the outside bank due to bed deepening, which is
caused by the secondary flow. For the typical values@7# P
'5 andF'0.4, A and As dominate in the second term o
the right side of Eq.~19!, combining to represent the overa
effect of secondary flow on the cross-stream shear. We t
A as a constant, ignoring its insignificantS-dependenceA
;FH;S21/6 @25,26#. Lacking any information about theS
dependence ofAs , we also treat it as a constant. Finally, w
ignore the 1–2 % correction supplied byF, and, therefore,
treatP as a pure dimensionless constant@7#, here dubbed the
‘‘Parker number’’ in honor of Gary Parker’s many contribu
tions to the field. Some previous studies@9,10,17# ignore the
sinuosity dependences ofU and D in Eq. ~19!, which are
crucial to the conclusions reached in Secs. VII and VIII.

To determine the distance required for the cross-stre
shear to recover from changes in the channel curvature
write the solution to Eq.~19! for the simple case of uniform
k,

u8~s,b!5bUPk1@u8~0,b!2bUPk#e2s/D. ~21!

Here,u8(0,b) is the value ofu8(s,b) at the upstream end o
the reach, andbUPk is the value approached asymptotica
with increasing distance downstream, with decay constanD.
Accordingly, D gives the distance required for the cros
stream shear to recover from changes ink, as claimed in Sec
II. When the cross-stream shearu8(s,b) does not match the
value bUPk prescribed by the local curvature, turbulen
3-6



is

si

-

a
ab
ri

pe

e

s

an

es
e
h
n
e

-

tly

f

g,

’’
i-

al
or

he

RIVER MEANDERING DYNAMICS PHYSICAL REVIEW E65 046303
drives it toward this value exponentially with increasing d
tance downstream. Note that setting]k/]s50 ignores Ber-
noulli shear entirely.

IV. SCALE INVARIANCE AND DIMENSIONLESS
VARIABLES

Combining Eqs.~18! and ~19! allows us to relatev(s,t)
andk(s,t) according to

]v
]s

1
v
D

5bEUS 2
]k

]s
1

Pk

D D . ~22!

This meandering equation possesses natural sinuo
dependent length and time scales,

D5
H

2Cf
5D0S1/3 ~23!

and

T5
D2

bEU
5T0S, ~24!

whereD05H0/2Cf and T05D0
2/bEU0 are the correspond

ing scales for a straightened river@Eqs. ~6! and ~7!#. These
sinuosity-dependent scales, therefore, govern the length
time scales for meandering, and account for the remark
observed meander wavelength scaling of natural meande
rivers @14#. Furthermore, we predict that the meandering
riod of natural rivers should scale asT, and that the down-
stream migration rate should scale asD/T. These scale in-
variances are less obvious to observe in natural riv
because of the long typical time scalesT associated with
meandering, which are of order hundreds or thousand
years. On the other hand, sinceD is typically of the order of
hundreds or thousands of meters, the length scale invari
is easily observed in maps or aerial photographs.

Although D and T set the natural length and time scal
for the problem, they are inconvenient as scales for dim
sionless variables because they depend on time througS.
Accordingly, we employ the time-independent length a
time scalesD0 and T0 for a straightened river to defin
dimensionless variables according tos5D0s̃, t5T0 t̃ ,
L(t)5D0L̃( t̃ ), L05D0L̃0 , r (s,t)5D0r̃ ( s̃, t̃ ), v(s,t)
5D0T0

21ṽ( s̃, t̃ ), u0(t)5D0T0
21ũ0( t̃ ), and k(s,t)

5D0
21k̃( s̃, t̃ ). These allow us to rewrite Eqs.~14!, ~15!, and

~22! as

]u

] t̃
5

] ṽ

] s̃
1k̃E

0

s̃
k̃~ s̃8, t̃ !ṽ~ s̃8, t̃ !ds̃82k̃ũ0 , ~25a!

dL̃

d t̃
5E

0

L̃
k̃ ṽds̃2ũ01ũL , ~25b!

S1/3
] ṽ

] s̃
1 ṽ52

]k̃

] s̃
1

P
S1/3

k̃, ~25c!
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k̃52] u/] s̃, ~25d!

and a lone dimensionless parameterP. Dropping the tildes in
Eq. ~25c! gives Eq.~1! of Ref. @13#, apart from a misplaced
minus sign in the latter equation. Equations~16! and ~17!
reduce to

x̃~ s̃, t̃ !5 x̃0~ t̃ !1E
0

s̃
cosu~ s̃8, t̃ !ds̃8, ~26a!

ỹ~ s̃, t̃ !5 ỹ0~ t̃ !1E
0

s̃
sinu~ s̃8, t̃ !ds̃8. ~26b!

Equation~25b! governs the time evolution of the river sinu
osity S5L̃/L̃0. For flood plains sloping in thex direction
only, the sinuosity may alternatively be computed direc
from Eq. ~26a! by writing L̃05 x̃(L̃, t̃ )2 x̃(0,t̃ ), whence

1

S
5

1

L̃
E

0

L̃
cosu~ s̃, t̃ !ds̃. ~27!

The scaled equations~25! governing the time evolution o
meandering rivers contain nonlinear integral terms@in Eqs.
~25a! and ~25b!# associated with stretching and shrinkin
and are otherwise linear.

The sinuosityS of the ubiquitous ‘‘sine-generated curve
@19# u( s̃)5e sinqs̃ can be determined analytically, for arb
trary amplitudese and centerline wave numbersq52p/L̃,
by inserting cosu5(l50

` (21)lu2l/(2l)! into Eq. ~27!. The re-
sult is

1

S
5(

l 50

`
~21! l~2l 21!!!

2l l ! ~2l !!
e2l , ~28!

where (2l 21)!! 5(2l 21)(2l 23)•••3•1, and (21)!! 51.
Retaining only the first four terms

1

S
512

e2

4
1

e4

64
2

e6

2304
~29!

is sufficient to giveS to within 2% for S<7 ~Fig. 4!.

V. LINEAR STABILITY ANALYSIS

The linear stability analysis of small-amplitude sinusoid
rivers @3# further validates the general equation of motion f
the river angle, Eq.~25a!. We consider small-amplitude
traveling-wave perturbations about a straight river of t
form

u~ s̃, t̃ !5Re@eei (qs̃2V t̃ )#, ~30a!

ṽ~ s̃, t̃ !5Re@hei (qs̃2V t̃ )#. ~30b!
3-7
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To first order in the amplitudese and h, Eq. ~26a! gives x̃

5 s̃, whenceL̃5L̃052p/q andS51. Accordingly, takinge
to be real, Eqs.~25a!, ~25c!, and~26b! give, to first order,

u~ s̃, t̃ !5ees t̃cos~qs̃2v t̃ !, ~31a!

k̃~ s̃, t̃ !5qees t̃sin~qs̃2v t̃ !, ~31b!

ỹ~ s̃, t̃ !5q21ees t̃sin~qs̃2v t̃ !, ~31c!

ṽ~ s̃, t̃ !5q21uVuees t̃sin~qs̃2v t̃ 2d!, ~31d!

with dimensionless wave numberq, frequencyv5ReV,
growth rates5Im V, phase velocityc5v/q, and phase lag
d satisfying

v5
11P
11q2

q3, ~32a!

s5
P2q2

11q2
q2, ~32b!

c5
11P
11q2

q2, ~32c!

d5tan21S v

s D . ~32d!

Equations~32a! and~32b! correspond to Eq.~18! of Ref. @3#.
The growth rates is positive for q,qc5P 1/2, and

reaches its maximum valuesm521P22(11P)1/2 where
q25qm

2 5211(11P)1/2 ~Fig. 5!, with P of order 1–10. For

FIG. 4. Successive explicit series approximations of the sinu
ity S of the sine-generated curve as a function of the amplitude,
according to Eq.~29!. Traces A, B, and C respectively include term
through ordere2, e4, and e6. Trace D gives the exact sinuosit
Traces C and D differ by at most 2% forS<7.
04630
the typical Beatton River valueP55 ~Ref. @7#!, we obtain
qc52.24, qm51.20, sm52.10, vm54.27, dm564°, and
cm5vm /qm53.55. Since these numbers are of order o
the length and time scalesD andT capture the correct scale
for the problem. Thus, the critical wavelengthlc
52pD0 /qc in conventional units divides the long
wavelength regime, for which meander bends grow in a
plitude, from the short-wavelength regime, for which ben
decay. Figure 5 also shows howc, the downstream migration
rate of meander bends, approaches the maximum valu
1P for short wavelengths and vanishes for long wav
lengths. The phase lagdm564° between the channel curva
ture and the downstream velocity shear profile greatly
ceeds the estimates 13°@23# and 24°@8# of the average phas
lag between the channel curvature and the secondary flo
natural rivers; this latter phase lag is ignored herein.

Of particular interest is the nodal phase lagd between
river inflection points such as pointB in Fig. 2~c!, where
ỹ( s̃, t̃ )5k̃( s̃, t̃ )50, and velocity nodes such as pointB9,
where the lateral migration velocityṽ( s̃, t̃ ) vanishes. This
phase lag vanishes for long wavelengthsl, indicating that
very long-wavelength meander bends grow in amplitu
with little accompanying downstream migration. Asd grows
with decreasing wavelength, more and more downstream
gration accompanies the lateral growth. The phase
reachesd5p/2 at the critical wavelengthl5lc , and ap-
proachesd5p for short wavelengths, whereỹ( s̃, t̃ ) and

ṽ( s̃, t̃ ) are completely out of phase, accounting for the ra
straightening of small-wavelength bends, due to Berno

s-

FIG. 5. Dimensionless growth rates, phase velocityc5v/q,

nodal phase lagd, nodal displacementD s̃5d/q and theq→` limit

D s̃→p/q for small-amplitude sinuosoidal perturbations of dime
sionless wave numberq about a straight river, according to Eq
~31d! and~32!. Although the typical valueP55 is used for the plot,
the q→0 and q→` limits of the scaled parameterss/P, c/(1

1P), d/p, andD s̃/(11P21) are independent ofP, hence plots for
other values ofP differ only in the details nearq51.
3-8
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shear. For wavelengthsl.lc relevant to river meandering
~all others quickly disappear!, the decay lengthD sets the
scale for the downstream distance between inflection po
and velocity nodes, called the nodal displacementD s̃5d/q
~Fig. 5!.

VI. STEADY PERIODIC FINITE-AMPLITUDE SOLUTIONS

Steady periodic finite-amplitude solutions that migra
downstream at a constant speed without changing form
low directly from Eqs.~25a! and ~25c!, without resorting to
an intermediate bend equation~Eq. ~11! in Ref. @27#!, by
simply demanding that each point of fixeds on the river
travel in the x̂5 ŝcosu2n̂ sinu direction with constant di-
mensionless speedc according to

] r̃

] t̃
5cx̂5ũŝ1 ṽn̂, ~33!

whenceũ5c cosu and ṽ52c sinu. Equation~25a! corre-
spondingly requires that]u/] t̃ 50, thereby, emphasizing tha
u is stationary as seen by an observer in the moving fra
Equation~25c! immediately yields

d2u

ds̃2
1S cS1/3cosu2

P
S1/3D du

ds̃
1csinu50, ~34!

which reduces to Eq.~18! of Ref. @7# by letting P→A/2,
S1/3→x21, s̃→2Cfs, and c→(2Cf)

21c. We seek finite-
amplitude periodic solutions of Eq.~34! of the form

u~ s̃!5 (
l 52`

1`

Q le
ilqs̃, ~35!

with Q2 l5Q l* to ensure the reality ofu, and with centerline

wavelengthL̃52p/q. Accordingly, working to third order in
u, Eq. ~34! reduces to

F11 iql S S1/32
P

cS1/3D 2
q2l 2

c GQ l

5 (
m,n52`

1` F1

6
1

1

2
iq~ l 2m2n!S1/3GQ l 2m2nQmQn .

~36!

Equation~27! then implies the third-order sinuosity,

S511(
l 50

`

uQ l u2. ~37!

Equations~36! and ~37! immediately yield the desired
finite-amplitude solution. Linearizing these equations in
l 561 modesQ61

(1)[7 i e/2 gives c(0)5q(0)25P and S(0)

51, in agreement with Eqs.~32! with q5qc . Expanding in
powers of the angle amplitudee according to

c5c(0)1c(1)1•••, ~38a!
04630
ts
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e

q5q(0)1q(1)1•••, ~38b!

S5S(0)1S(1)1•••, ~38c!

Q l5Q l
(1)1•••, ~38d!

gives c(1)5q(1)5S(1)5Q l
(2)50 to second order, andc(2)

52Pe2/24, q(2)52P 1/2e2/12, S(2)5e2/4, and Q63
(3)

5(P 1/27 i /3)e3/128 to third order, whence

c5PS 12
e2

24D , ~39a!

q5P 1/2S 12
e2

12D , ~39b!

S511
e2

4
, ~39c!

u~ s̃!5e sin~qs̃!1
e3

64S P 1/2cos 3qs̃1
1

3
sin 3qs̃D .

~39d!

Equations~39! agree with Eqs.~19!–~21! of Ref. @7#, where
Eq. ~39d! is called the Kinoshita curve. Thus, we can recov
the known finite-amplitude solution without resorting to
bend equation.

VII. TIME-DEPENDENT NONLINEAR MODAL ANALYSIS

To study the time development of periodic meander p
terns, we employ general time-dependent expansions

u~ s̃, t̃ !5 (
l 52`

1`

u l~ t̃ !eilqs̃, ~40a!

k̃~ s̃, t̃ !5 (
l 52`

1`

k l~ t̃ !eilqs̃, ~40b!

ṽ~ s̃, t̃ !5 (
l 52`

1`

v l~ t̃ !eilqs̃, ~40c!

with time-dependent centerline wave numberq52p/L̃ and
wavelengthL̃, time-independent cartesian wave numberq0

52p/L̃0 and wavelengthL̃0, sinuosityS5L̃/L̃05q0 /q, and
the reality conditionsu2 l5u l* , k̃2 l5k̃ l* , andṽ2 l5 ṽ l* . We

take ỹ(0,t̃ )5 ỹ(L̃, t̃ ) to align the river axis with thex axis,
whence Eq.~26b! implies thatu050. Setting ũ05ũL and
substituting these expansions into Eqs.~25! gives

k l52 i lqu l , ~41a!

v l5Alk l , ~41b!
3-9
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dS

d t̃
5q2S (

l 52`

1`

l 2Al uu l u252q2S(
l 51

`

l 2uu l u2ReAl ,

~41c!

du l

d t̃
5~ l 2q2Al1 i lqũ0!u l2q2

3 (
m,n52`

mÞn

1`
mn

m2n
An@ lu l2~ l 1m2n!u l 1m2n#u2mun ,

~41d!

where the coefficient,

Al5
P2 i lqS1/3

11 i lqS1/3
S21/35

P2 l 2q2S2/3

11 l 2q2S2/3
S21/32

11P
11 l 2q2S2/3

i lq ,

~41e!

satisfiesA2 l5Al* , and where we have taken care to inclu
the time dependence ofq on the left side of Eq.~25a!. The
results of Sec. V follow by linearizing Eqs.~41! with u1
5ee2 iVt. The results of Sec. VI also follow from Eqs.~41!

by writing du l /d t̃50, u71
(1)57 i e/2, and ũ05c cosuus50

5ccos((l52`
1` ul), and by expanding in powers ofe. Although

Eqs.~36! and~37! describe steady periodic meander patte
valid only to third order ine, Eqs.~41! describe fully non-
linear time-dependent periodic meander patterns. In con
with a previous analysis by Zolezzi@12#, which includes
only the modesu1 , u3, and u5, our Eqs.~41d! include all
modes. Furthermore, we also introduce Eq.~41c!, which
governs the explicit evolution ofS.

To study the time-dependent nonlinear dynamics g
erned by Eqs.~41!, it is convenient toassignthe s̃50 point
on the river to a bend apex, where

u~0,t̃ !5 (
l 52`

1`

u l~ t̃ !52(
l 51

`

Reu l50, ~42!

for all time, so thatũ0[c is the time-dependent downstrea
migration rate of the apex. In contrast with the steady so
tions of Sec. VI, other points along the periodic mean
pattern, such as thex-axis crossings, do not generally migra
downstream with the same speedc.

For fixedP and fixedq05qS, Eqs.~41c!, ~41d!, and~42!
together determine the time-dependent sinuosityS, apex
downstream migration ratec5ũ0, and complex mode ampli
tudesu l . Settingu l50 except forl 561, 62, . . . ,6N re-
duces Eqs.~41d! to N complex equations forl 51,2, . . . ,N,
with u2 l5u l* . Invoking forward differences, with integra

tion time stepD t̃ , to approximate the time derivatives in Eq
~41c! and~41d!, explicit numerical solutions foru l , S, andc
are easily obtained.

For the initial conditionu l50 except foru6157 i e/2,
which corresponds to the sine-generated curveu( s̃)
5e sinqs̃, Eqs.~41d! require growth of the higher-order od
modes l 563, 65, etc., but fail to couple to any eve
04630
s
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modes withl 50, 62, 64, etc. The cubic nonlinearity in
Eqs.~41d! also fails to couple to any even modes when t
initial condition includes higher-order odd modes, as no
previously by Seminara@11#. This can be seen from th
structure of the cubic terms in Eqs.~41d!, which requireu l
50 for all evenl for all time if these modes vanish initially
If the initial condition includes even modes, our simulatio
show that these modes decay quickly to zero. A phys
reason for this restriction to odd modes is still lacking.

To test the accuracy of results for different values ofN,
we compare values ofS5L̃/L̃0 obtained from Eq.~41c! with
values obtained by integrating Eq.~27!, with L̃52p/q. For
these tests, we used the sine-generated curve as the i
condition with e50.01, and usedP55, q5qm51.20, and
D t̃ 50.001. Allowing the bend amplitude to grow until th
sinuosity reaches the valueS57, we found that values ofS
determined by the two methods differ by at most 7%, 2
0.5%, and 0.2% forN53, 5, 7, and 9, respectively. Thus, th
agreement between the two methods quickly improves w
increasingN, andN59 yields sufficiently accurate results.

VIII. RESULTS AND CONCLUSIONS

Of particular interest is the sinuositySc at oxbow cutoff,
when adjacent river bends meet, whereupon the river ce
to flow through a loop of the river called an oxbow lake. F
periodic rivers, one oxbow lake is cut off for each wav
length of the river, andSc represents the maximum sinuosi
of the river. Here we calculateSc for zero-width periodic
rivers, that is, the value ofSwhen the centerlines of adjacen
bends first meet each other. This value represents an u
limit on the cutoff sinuosity for finite-width periodic rivers
which cut off at smaller sinuosities, when the banks of ad
cent bends~rather than their centerlines! meet each other, o
when floods erode the narrow strips of land between adja
bends.

To calculateSc , we employ P55, q5qm51.20, and
D t̃ 50.001 to integrate Eqs.~41c! and ~41d!, and then use
Eqs. ~26a! and ~26b! to produce snapshots of the shapes
the river centerline at various times during the growth of t
bend~see Fig. 3 of Ref.@13#, for example!. The cutoff time,
sinuosity, and downstream apex migration rate for a parti
lar value ofN follow when the centerlines of adjacent ben
meet in such a snapshot. These values~symbols!, together
with their exactN→` limits t855.690, S56.6945, andc
520.098 971~dotted lines! are plotted in Fig. 6. Thus, a
cutoff, the river is stretched to 6.6945 times the distan
between its endpoints. The downstream apex migration rac
at cutoff converges much more slowly thant8 andSbecause
it is much more sensitive to the details of the shape of
river. The positive valuesc510.450 andc510.0418 for
N51 andN53 ~off the scale of Fig. 6! imply downstream
migration, in contrast with the negative values for largerN,
which imply upstreammigration. Previous calculations b
Seminara~Ref. @11#! for N<3 fail to capture this upstream
migration prior to cutoff.

Growth of the amplitude of long-wavelength bends occ
only for dimensionless centerline wave numbersq,qc ,
3-10
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whereq52p/L̃ involves the dimensionless centerline wav
length L̃5L/D0 measuredalong the river centerline, which
equals or exceeds the usual dimensionless cartesian w
length L̃05L0 /D05L̃/S measured along a straight line. A
upper limit onqc can be obtained by rewriting Eq.~41c! as

dS

d t̃
522q2S2/3(

l 51

`
l 2q22PS22/3

l 2q21S22/3
l 2uu l u2. ~43!

Accordingly, if

q.
P 1/2

S1/3
~44!

holds initially, then all modes make negative contributions
dS/dt for all times becauseq05qS is fixed. The sinuosityS
of such short-wavelength rivers must, therefore, decre
monotonically with time. This fully nonlinear result is vali
for arbitrary finite-amplitude rivers of any shape, and su
plies an upper limitqc5P 1/2/S1/3 on the exact critical wave
number. This limit exceeds the exact critical wave number
at most 10% over the full range of possible sinuosities@13#.
In summary, an arbitrary periodic river whose centerli
wave number satisfies Eq.~44! will always straighten with
time, eventually becoming a straight line, regardless of
detailed initial shape of the river.

Remarkably, Eq.~44! follows simply by extending the
exact linear growth condition to a sinuous finite-amplitu
river. The linear condition~Sec. V! states that perturbation
about a straight river decay in amplitude if their waveleng

FIG. 6. Time ~circles!, sinuosity ~squares!, and downstream
apex migration rate~diamonds! at oxbow cutoff predicted by trun
cating and integrating Eqs.~41c! and ~41d!, versus the truncation
parameterN, together with exact results for these quantities~dashed
lines!. The negative values ofc indicate that bend apexes actual
travel upstream at cutoff.
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satisfy l,2pD0 /P 1/2 in conventional units, whereD0
5H0/2Cf is the decay length for a straight river. Extendin
this linear condition to a sinuous river with decay lengthD
5H/2Cf5D0S1/3 @Eq. ~23!# gives the nonlinear growth con
dition

l,
2p

P 1/2
D, ~45!

where l is measured in conventional units along the riv
centerline. Equation~44! follows immediately as the corre
sponding dimensionless condition onq52pD0 /l.

Perturbations of centerline wavelengthl satisfying Eq.
~45! decay with time. The critical wavelength scales withD,
as might have been expected from the discussion in Sec
Why, though, should this nonlinear condition follow as t
simple extension of a linear condition valid only for sma
perturbations about a straight river? The answer lies in
linearity of the meandering equation, Eq.~25c!, which deter-
mines the sinuosity-dependent phase lag between the ve
ity and curvature@compare Eq.~32d!#,

d5tan21F ~11P!S21/3q

PS22/32q2 G , ~46!

which takes responsibility for the stability of individua
modes. This phase lag follows from Eq.~25c! by settingk̃

5kmeiqs̃, ṽ5vmeiqs̃, andvm5re2 idkm . Just as for the lin-
ear problem, the phase-lag conditiond.p/2 leads directly to
the stability condition, Eq.~44!. For meander bends to grow
with time, the normal velocity must point in the directio
opposite the center of curvature of the channel. Sinceṽ and
k̃ are, respectively, defined as positive for growth to the
and curvature to the right as seen by a river-bound obse
facing downstream,ṽk̃.0 implies growth andṽk̃,0 im-
plies decay. Ford,p/2, ṽk̃.0 for over half the wave-
length, leading to net growth, whereas ford.p/2, ṽk̃,0
for over half the wavelength, leading to net decay. T
stretching nonlinearity in the equation of motion~25a! gov-
erns the relative contributions of the individual modes, b
not their stability. The meandering equation, Eq.~25c!, takes
full responsibility for the stability of individual modes.

In summary, we have used the equation of motion int
duced by Seminara and co-workers@11,12#, the channel mi-
gration rate of Ikeda, Parker, and Sawai@3#, and our own
equation for the time-dependent river length to study
meandering of periodic rivers. This approach allows us
recover the known length scaleD for meandering and to
introduce the associated time and velocity scalesT andD/T,
which await experimental verification. An explicit equatio
governing the river sinuosity, which is derived from our riv
length equation, allows us to analytically determine the cr
cal wavelength for nonlinear river meandering. This critic
wavelength separates short-wavelength bends, wh
straighten with time, from long-wavelength bends, whi
grow. A general time-dependent nonlinear modal analysis
periodic rivers reveals that modes higher than the third m
3-11
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are needed to describe upstream migration of bend ap
just before oxbow cutoff, and are important to accurate c
culations of the time and sinuosity at cutoff.

Our physical approach yields a better understanding of
basic mechanisms of meandering. We attribute the deca
small-wavelength meander bends to Bernoulli shear cau
by the cross-stream surface elevation gradient. We trace
origin of neutral meandering stability to the competition b
tween Bernoulli shear and the secondary flow. We show
the length scaleD is the downstream distance required f
cross-stream shear to recover from changes in the cha
s

h
r

rz

n

33
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curvature, and thatD, therefore, plays a key role in down
stream migration of river bends.
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